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Abstract. The role of rare-earth atomic ‘collapse’ in the formation and thermodynamics of
aluminium-rich metallic glasses is studied, using the example of the Al90La10 metallic glass.
Monte Carlo simulations are carried out for structural models containing 500 atoms in a cubic cell
with periodic boundary conditions. The change of the pair interaction due to the atomic collapse
is taken into account. An equivalent Ising Hamiltonian, accounting for the collapse transitions,
is introduced. The Ising Hamiltonian is used to calculate the temperature dependence of the
specific heat, which exhibits two temperature humps associated with the decollapse of the La
atoms. The corresponding temperature is close to the experimentally measured temperature at
which crystallization of the glass begins.

1. Introduction

A group of Al-rich metallic glasses has recently attracted attention. Their typical content is
close to Al90RE10 where RE denotes a rare-earth element. They are usually ductile, and have
tremendous strength and high corrosion resistance which seem to be connected with a high
local stability of the corresponding compositions [2, 3]. One of the important issues in the
formation of such metallic glasses is the fact that the RE-to-Al ratio of about 1:9 violates the
standard atomic size criterion for glass formability [4].

We reported in our previous paper [1] the anomalous approach of atoms in Al90La10

metallic glasses. Our simulations show that the La atoms are always well separated from
each other by Al atoms and that nearly every La atom has an Al neighbour at a distance
smaller than the sum of their characteristic atomic radii. This feature can be observed in the
radial distribution function as a small prepeak in front of the main peak of the distribution.
It is worthwhile mentioning that the possibility of shortening of interatomic distances was
discussed by Turnbull [5] for several transition-metal-based glasses.

One may argue that this anomalous approach creates an excessive pressure on the La atoms
which can, in principle, cause charge-transfer processes and, hence, a change of the electronic
configuration of the rare-earth atoms. This, in turn, may have an impact on the properties of
the glass. The purpose of the present paper is to study the role played by these charge-transfer
processes, via the so-called atomic collapse phenomena.

Mayer was concerned in [6] with the peculiarities of rare-earth atoms, which primarily
consist of a sudden increase of the 4f-electron binding energy and a contraction to smaller radii
(‘collapse’) of the 4f-electron orbit as the atomic numberZ increases. Band and Fomichev [7]
found, by means of Dirac–Fock calculation, a possibility of coexistence of two different states
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with the same configuration of the lanthanum and other atoms. The atoms in these states have
different energies. A 4f electron in the first, collapsed, state moves into an inner well of its
effective potential while in the second, blown, state it moves into an outer well.

The total atomic energy in the collapsed state is 2 to 3 eV higher than in the blown state.
The change in atomic size for different rare-earth elements may be about 20% [8]. Considering
both the anomalous approach and the possible collapse of the rare-earth atoms, one may expect
this to open a way to an additional relaxation of the system and that it may have an important
impact on the thermodynamics. The transfer to the collapsed state, which costs some energy,
is accompanied by a decrease of the rare-earth-atom radius. Such a change of the rare-earth-
atom radius can cause a decrease of the structural part of the glass energy. That is why we find
it interesting to address the question of the collapsed–blown-state transitions in the Al-rich
glasses.

A simulation of the same system, Al90La10, as in reference [1] is carried out, allowing
for the possibility of the blown–collapsed-state transitions. The next section will outline the
model potential and some details of the techniques used in the simulation. The results will
be described and discussed in the third section. The principal aim of our investigation is to
determine the role of the rare-earth atomic collapse in the formation and thermodynamics of
this class of metallic glasses. To address these issues, we propose to consider an equivalent
Ising model in which the blown–collapsed-state transitions are described by spin flips.

2. The model potential and simulation procedure

First, we address the problem of how to construct a potential which describes the interaction
between Al–La pairs in both ‘blown’ and ‘collapsed’ states of La. The pair potentialULa−Al

is the only one in which the collapse may be of importance. La atoms are well separated from
each other and changes in their atomic structure do not influence the interaction in La–La pairs.
As for Al–Al pairs, there is no place for collapse here at all.

The new potential corresponding to the collapsed state of the atom should take into account
the fact that the trivalent La atoms convert into divalent ones with a smaller atomic radius and
larger energy of the electron shell. In fact, we will consider a situation in which the rare-earth
atoms have an additional degree of freedom associated with the possibility of a transition to
the collapsed state. The shape of the pair potential changes due to this transition.

The Lennard-Jones potential

Uα−β = Bα−βr−12− Aα−βr−6 (1)

for the interaction between the atomα and the atomβ is usually quite sufficient for a simulation
of the principal thermodynamic properties of the glass. Such a potential allows for good
agreements with the experiment for most other systems [9]. Here the parameterAα−β describes
the dipole–dipole interaction between pairs of atoms and depends on the radii and numbers
of the valence electrons of the interacting atoms. These parameters for the Al–Al, La–La,
Al–La, Al–Lacoll pairs are calculated with the known La radii for the blown (1.87 Å) and
collapsed (1.63 Å) states, with the Al radius being 1.43 Å. (The superscript ‘coll’ denotes the
collapsed state of the atom.) The parametersBAl−Al andBLa−La are chosen from Monte Carlo
simulations for pure Al and La, such that the first peaks of the radial distribution functions and
the densities correspond to their respective values in the crystalline phases.

In order to determine the values of the parameterBLa for the blown and collapsed states,
we use the radial distribution function obtained by XAFS for Al91La9 metallic glasses [10].
The parametersBLa andBLacoll are initially chosen in such a way that the minima of the two
pair potentials are at 3.3 Å and 2.9 Å for the blown and collapsed states respectively. After the
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simulations were done, theseB-values were corrected in order to achieve a better agreement
between the experimental and theoretical radial distribution functions. These corrections
appeared to be very small.
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Figure 1. Three possible pair potentials are exhibited as functions of the separation distance of the
pairs. One of these pair potentials (the Al–La one) changes its shape when the La atom collapses.
(a) The pair potential for Al–Al atoms. (b) The pair potentials for Al–La (solid) and Al–Lacoll
(dashed) atoms. (c) The pair potential for La–La atoms.

Now the pair potentialULa−Al can take two possible shapes, depending on the state of the
La atom:

ULa−Al =
{
BLa−Al r

−12− ALa−Al r
−6 (blown)

BLacoll−Al r
−12− ALacoll−Al r

−6 +1E (collapsed).
(2)

Here1E = 2 eV is the increase of the La shell energy, caused by the transition from the blown
to the collapsed state, whose value is taken from reference [7]. Four available pair potentials
are exhibited in figure 1.

The simulation is carried out for 500 atoms (450 Al and 50 La atoms) packed in a cubic
cell. Its dimension is chosen according to the experimentally measured density of the glass
(ρ = 3.35 g cm−3 [11]). Special care is taken to ensure that the initial distributions of
atoms do not contain La–Al pairs at distances smaller than 3.3 Å. The standard Monte Carlo
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procedure [12] is realized for different temperatures. The periodic boundary conditions as
described in [1] are implied.

In principle, at each step of the calculation random shifts of the atomic positions should
be generated as well as possible transitions between the blown and collapsed states of the rare-
earth atoms. This means that the coordinates and the atomic states are independent variables.
However, there is a certain correlation between these for the following reasons:

(a) If the distance in a La–Al pair is more than 3.3 Å (the minimum of the potential (2) in the
blown state) there is hardly any energy gain associated with the transition to the collapsed
state. In this case the La–Al distance is larger than the sum of the effective radii of the
two atoms and no structural changes are able to compensate for the 2 eV increase of the
La atom energy due to the collapse.

(b) If this distance is smaller than 3.1 Å (see figure 1(c)) the blown state can hardly compete
with the collapsed state. Then the La–Al distance is smaller than the sum of their radii
(with the ‘collapsed’ radius for La) and the interaction in this pair becomes too large if
the La atom converts back to the blown state.

We made an additional study of the influence of the value 3.1 Å on the average number of
collapsed and deformed atoms. The simulations for the value 3.0 Å showed that no substantial
changes happen. (The same is true for the upper value, 3.3 Å.) This correlation can be used to
reduce the computation time by applying the following rules:

(a) All of the Al atoms are initially separated from their La counterparts by distances larger
than 3.3 Å and all of the La atoms are in the blown state.

(b) All of the La atoms, whose closest Al neighbours are separated by distances larger than
3.3 Å, are always blown.

(c) If an Al atom approaches the La to a distance between 3.3 Å and 3.1 Å, the computer checks
whether such a step is acceptable according to the Metropolis rule without a transition to
the collapsed state. Only if the step is not acceptable is the possibility of the transition
checked for the same configuration.

(d) When neighbouring Al atoms wander at distances 3.3 Å to 3.1 Å, the possibility of
transition between blown and collapsed states is routinely checked.

(e) All of the La atoms which have Al neighbours at distances smaller than 3.1 Å are assumed
to be in the collapsed state.

The average number of La atoms in the collapsed state is calculated as a function of
temperature. There are also a certain number of La atoms in the blown state with Al neighbours
at distances smaller than the minimum of their pair potential (<3.3 Å). These will be called
in what follows ‘deformed atoms’ and their number, versus temperature, is also found. The
averaging procedure does not take into account the states which are correlated with the initial
configuration, which means that the averaging starts only after some necessary relaxation time.
The corresponding number of Monte Carlo steps is estimated for different temperatures from
the calculated value of the diffusion coefficient [13]. This number is chosen to be sufficient
for a randomly diffusing atom to pass through the distance between two opposite walls. The
averaging is done over a somewhat larger number of steps.

3. Results and discussion

3.1. Monte Carlo simulation results

As mentioned above, we start our simulation with zero collapsed and deformed La atoms, since
none of them have Al neighbours closer than 3.3 Å. During the Monte Carlo process some Al
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atoms approach the La atoms and may cause their conversion into a collapsed state.
As we have mentioned in [1], a local configuration contains one La atom and nine Al

atoms†. It appears that the Al atoms which are in the majority in our system try to form a
regular and possibly densely packed structure, but some important places are occupied by La
atoms and prevent its formation. Nevertheless, the Al system tries to push its atoms into these
occupied places at the expense of its own energy. Atomic collapse presents a new possibility
for lowering the energy of the system, by decreasing the effective radius of the La atoms which
is accounted for by the potential (2).
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Figure 2. Radial distribution functions obtained by the splice method of XAFS [10] (dashed) and
Monte Carlo simulations (solid). When comparing these two curves one should take into account
that the experimental resolution is much lower than that achieved theoretically. Comparing the
positions of the principal peak and relevant areas (as described in the text), the coincidence of the
experiment and the theory is remarkable.

The RDF function plotted in figure 2 is clear confirmation of this statement. One can
distinguish two peaks of the RDF function. The first small peak (the so-called prepeak)
apparently corresponds to pairs of collapsed La–Al atoms separated by a distance of about
3.0 Å. When comparing the experimental and calculated RDFs, one should keep in mind that

† Reference [10] gives 14.5 as the number of atoms in the ‘first coordination sphere’. To be more exact, this is the
number of Al atoms lying at distances smaller than 4.1 Å from the La atom, which is in agreement with our simulation.
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the experimental resolution is much lower than that achieved in calculation. The experimental
curve is a sort of coarse-grained version of the theoretical one. Comparing the two curves, we
want to emphasize a remarkable coincidence of two important parameters:

(a) The positions of the main peaks coincide nearly exactly.
(b) The coordination numbers, calculated as the areas under the RDF in the range up to

the distances of about 4 Å, agree very well with the experimental value (14.5—theory;
14.5 ± 0.1—experiment); the areas under both theoretical and experimental RDFs up
to distances smaller that 3.1 Å are close to 1.5. The latter number means that there is
always one Al atom positioned anomalously close to each La atom, which is normally in
a collapsed state.
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Figure 3. The dependence of the average number of collapsed and deformed atoms on the
temperature. The number of collapsed atoms becomes smaller at higher temperature. However,
this decrease is not as rapid as one may have expected since the simulations are carried out at a
constant volume of the glassy system.

We calculate the average number of the deformed and collapsed La atoms in the
temperature interval 350 K to 850 K. Figure 3 shows the dependence of the average number of
collapsed and deformed atoms on the temperature. One can see that nearly all of the La atoms
are either collapsed or deformed, which corresponds to our previous result on the anomalous
approach [1]—a La atom has as a rule an Al counterpart which lies closer than the minimum of
their pair potential (in the blown state). This exerts a certain ‘pressure’ on the corresponding
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La atom and pushes it into the collapsed state. This causes a change in the La–Al pair potential
and this Al atom is now better situated, at the minimum of the potential.

The average number of collapsed atoms decreases slowly with temperature. However,
contrary to our intuitive expectations, the transition from collapsed to blown state with
increasing temperature does not occur rapidly enough. It is worthwhile to draw attention
to the fact that the simulations are carried out at constant volume rather than at constant
pressure, which would have corresponded better to the normal experimental situation. When,
at increased temperature, the La atoms tend to blow, the fixed volume of the system prevents
them from doing this. This may be equivalent to a high external pressure applied to the sample,
which might be useful if we want to realize such conditions experimentally.

In order to understand this aspect of our system in more detail, we carry out an additional
simulation and calculate the pressure on the individual La atoms in ‘blown’ and ‘collapsed’
states for various temperatures. This pressure is calculated according to the technique described
in [4]. The internal stress on the La atoms was defined as

σ
αβ

i =
1

2
�i
∑
j

f αi,j r
β

i,j (3)

where�i is the La-atom volume;fi,j and ri,j are the two-body force and the separation
between theith andj th atoms, respectively. Since amorphous alloys are macroscopically
nearly isotropic, we can adopt the spherical representation and consider the average hydrostatic
pressure as

p = 1

3
(σ xx + σyy + σ zz). (4)

Figure 4 shows the dependence of the average pressure exerted on the collapsed La atoms
on the system temperature, the averaging being done over all collapsed atoms. This pressure
is negative in the temperature interval 300 to 600 K. This means that the La atoms attract
the neighbouring Al atoms and stabilize the system by decreasing the total internal energy.
At temperatures larger than 600 K, the average pressure on the collapsed La atoms becomes
positive. All collapsed La atoms try to pass to their blown state and push the Al atoms away,
thus increasing the volume of the system. This is, however, not possible since the volume of
the system must remain constant during the simulation.

In the next subsection we will consider an equivalent Ising model with parameters deduced
from the above simulations. It will allow us to bypass the problem of the constant volume and
to arrive at some conclusions on the thermodynamic properties of our system.

3.2. The Ising model for Al-rich metallic glasses

The atomic collapse phenomenon seems to play an important part in the formation of the Al-
rich metallic glasses, as has been demonstrated by the above simulations. The ability of the
rare-earth atoms to be in one of two states—collapsed or blown—can be formally described
by an iso-spin in an external field. This leads one to assume that a certain version of the Ising
model

H = (1/2)
∑
ij

I sisj − h
∑
i

si +Nc (5)

may describe the thermodynamic properties of the Al-rich glass. The summation in the first
sum in equation (5) is carried out only over the rare-earth atoms and includes only their nearest
neighbours.N is the number of rare-earth atoms. The ‘blown’ and ‘collapsed’ states of each
atom correspond to the up,s = 1, and down,s = −1, states of the iso-spin, respectively.
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Figure 4. The dependence of the average pressure of the collapsed La atoms on the system
temperature. This pressure increases with the temperature, indicating the tendency of atoms to
decollapse—which is largely prevented by the volume of the system, which is kept constant.

The parameters in equation (5) can be found in the following way. First, consider a pair
of rare-earth atoms, with the surrounding Al atoms. Their total energy depends on the state of
the rare-earth atoms and may have any of three valuesI↑↑, I↓↑ = I↓↑, andI↓↓. These energies
should include the difference between the energies of the collapsed and blown atoms and the
relaxation of the neighbouring Al atoms caused by the change of the rare-earth-atom radius.

The parameters of the Hamiltonian (5) are connected with the above three energies by the
equations

I − 2h + c = I↑↑
−I + c = I↑↓
I + 2h + c = I↓↓.

Thus

c = 1

4
(I↑↑ + I↓↓ + 2I↑↓)

I = 1

4
(I↑↑ + I↓↓ − 2I↑↓)

and

h = 1

4
(I↓↓ − I↑↑).
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I↑↑ is the energy of a subsystem when two La atoms are blown,I↓↓ that when two La
atoms are collapsed, andI↑↓ that when one of the La atoms is collapsed and the other one is
blown. The computer calculations of the quantitiesI↑↑, I↓↓, andI↑↓ were carried out using
the Lennard-Jones potential as described in the previous section for several subsystems. Using
the average values of these quantities, we estimated the parameterI to be negative and about
−0.15 eV, meaning that the coupling between the iso-spins is of a ferromagnetic character. So
the model has a tendency for spins to align. The ‘effective magnetic field’h is about 0.01 eV.
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Figure 5. Comparison of the results for the temperature dependence of the average spin obtained by
solving the effective Ising Hamiltonian (stars) and by Monte Carlo simulations (solid circles). One
can see the difference between the behaviours of the average spin (average number of collapsed
atoms) for the two models, which actually correspond to measuring this quantity at a constant
volume or at a constant pressure, respectively.

The partition function for such a system

Z =
∑
{si=±1}

exp

[
β

(
−(1/2)

∑
ij

Iij sisj + h
∑
i

si

)]
(6)

can be calculated in the mean-field approximation when the thermal averaging of a spin value
is given by means of the equation

〈si〉 = − tanh

[
β

(∑
j

Iij 〈sj 〉 − h
)]
. (7)
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Assuming that the average spin values〈si〉 do not depend oni, equation (7) becomes

〈s〉 = tanh[−β(zIs − h)] (8)

wherez is the coordination number (the number of the nearest-neighbouring La atoms, chosen
to be six in our calculations).

This equation is solved numerically and figure 5 presents the dependence of the average
iso-spin on the temperature. These results and the results of Monte Carlo simulations are
presented in figure 5. One can see that our assumption of a stronger dependence of the
average number of collapsed atoms on the temperature at constant pressure was correct. It is
emphasized here that, although formally the volume of our Ising system does not change, the
result presented here describes a system with variable volume. One can understand this from
the fact that no restrictions have been placed on the rotation of the iso-spins. However, the
states with up and down iso-spins correspond to La atoms with different volumes; hence the
volume of the real physical system changes according to the proportion of up and down spins.
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Figure 6. The dependence of the specific heat on the temperature, with two humps. The appearance
of these humps is associated with the onset of spin flips, i.e. decollapse processes. One may assume
that in this temperature region the glasses system loses it stability and a crystallization process (not
accounted for by the Ising model) may commence.

3.3. Heat capacity

The paper [2] presents differential scanning calorimetric curves (DSC) of amorphous
Al 100−xLax (x = 7, 8, 9 and 10) alloys which exhibit two exothermic peaks. The first
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exothermic peak is observed at a temperature of about 500 K, whereas the second one shows
up at about 600 K. These peaks are attributed to the precipitation of crystallites in the glass.

Using the mean-field variational approach to the Ising model, one can get an expression
for the variational free energy (see, e.g., [14]). This is done by replacing the actual interaction
between parts of the system by a fictitious interaction with some external field or potential. The
Hamiltonian is then divided into two parts,H = H0 +H1, whereH0 is a trial Hamiltonian in
which none of the system variables interacts with the effective external field. The interaction
is characterized by the parameterλ, and the free energy is minimized with respect toλ. The
result is

fvar(λmin) = −(1/β) ln[2 cosh(βλmin)] − (λmin − h)2/2zε (9)

whereλmin is the solution of the equation

λmin − h = zε tanh(βλmin). (10)

Now it is a matter of standard calculations to find the specific heatCv.
Figure 6 presents the dependence ofCv on the temperature. Two peaks in the heat capacity

are clearly visible. We suppose that the first peak marks the temperature at which the La atoms
transit from their ‘collapsed’ to ‘blown’ states. The second peak indicates that the iso-spins in
the system become unbound. Near this region of temperatures the system absorbs most of the
heat.

Since the model does not incorporate the possibility of crystallization, this curve cannot
be directly compared with the above experiment. However, the decollapse of the La atoms
predicted by the model clearly indicates a loss of stability of the glassy state and a possibility
of crystallization. It is remarkable that the decollapse temperature region is close to the
experimentally observed onset of crystallization.

4. Conclusions

This paper demonstrates how the rare-earth-atom collapse influences the formation and
thermodynamics of Al-rich glasses. The collapse is introduced by means of a Lennard-
Jones potential, constructed in such a way that two possible atomic states of La are taken
into account. The standard Metropolis procedure is then applied for the calculation of the
radial distribution function. The results are in agreement with the XAFS results on the radial
distribution function [10]. The average numbers of deformed and collapsed La atoms are
calculated, and the dependence of these values on the temperature is studied.

It is shown that the system can be described by an equivalent Ising Hamiltonian whose
parameters are estimated on the basis of the above simulations. This Hamiltonian allows one
to study some thermodynamic properties of Al-rich glasses in a straightforward fashion. We
investigated the dependence of the average spin values〈si〉 (describing two possible atomic
states) on the temperature. The temperature dependence of the specific heat is also obtained in
the mean-field approximation. The temperature at which La atoms start decollapsing is close
to the temperature at which crystallization is observed experimentally [2].

All of this indicates the important part played be the rare-earth atomic collapse in the
formation of the Al-rich metallic glasses and in their thermodynamics.
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